

Enzyme Sugar Platform (ESP) Project

Project Overview

Dan Schell

FY03 Review Meeting

Golden, Colorado

May 1-2, 2003

Outline

- Introduction
- History
- Meeting Goals
- Evaluation Criteria
- How Work Efforts/Presentations Address Key Barriers

High-Level Project Mission

Facilitate commercialization of enzyme-based cellulose hydrolysis "Sugar Platform" technology by advancing enabling tools and knowledge.

Major Steps in an Enzymatic Process

Critical Success Factors

- 1. The integrated process must perform reliably at levels commensurate with attractive economics
 - ➤ Focus of project work is rigorous process modeling and highquality performance data and mass balances for integrated systems operated under realistic conditions
- 2. Sufficient quantities of corn stover (or other feedstock) must be sustainably available at an acceptable cost
 - Sustainable harvest must be proven and documented; focus of life cycle assessments being supported by NREL, ORNL, USDA, and others
 - ➤ Technologies and infrastructure must be developed to collect, store, transport, and deliver feedstock; focus of ORNL, INEEL, and USDA efforts (*roadmap effort underway*)
- 3. Cost-effective cellulase enzymes must be available
 - Focus of DOE-subcontracted efforts by Genencor and Novozymes

Main Project Participants

Strategic Fit: Enabling Biorefineries

 This project demonstrates enabling technology for a lignocellulosebased biorefinery

 This project focuses on the core steps needed to produce sugars, fractionated lignin, and ethanol

Project History

Stage 1 work initiated in 2000

(project conceived to be on commercial track as placeholder for eventual industry-led effort)

Stage 1 Highlights

- Selected corn stover as the model feedstock
- Initiated literature reviews of pretreatment and cofermentation technology
- Began outreach/discussions with key stakeholders

Project History (cont'd)

Stage 2 work started in January 2001

Stage 2 Highlights

- Developed better understanding of market opportunity
- Substantially advanced process modeling
- Finished pretreatment and fermentation literature reviews, started technology down-selection
- Began multi-institution supported life cycle analysis effort with ORNL, USDA and other laboratories

Project History (cont'd)

Passed Gate 3 in January 2002 and began Stage 3...

Today's focus

- Highlights of Gate 3 reviewer feedback and our responses
- Current work priorities
- Summary of recent accomplishments and future plans

High-Level Reviewer Feedback Gate 3 January 2002

- Focus on core saccharification technology and integration issues rather than trying to assemble a full technology package
 - Let industry select specific combinations of feedstocks, processes, and products for commercial track projects aimed at exploiting particular business opportunities

Stage Gate Project Management

Bioenergy Awards

Commercial Track Projects

Research Track Projects

ESP Project
Related Core R&D

Project Work Priorities

- Core Technology Research
 - Sample compositional analysis, feedstock variability, high solids pretreatment, enzymatic cellulose hydrolysis, and integrated processing
- Process Engineering and Analysis Research
 - Adding risk analysis to technoeconomic evaluations
 - Completing substantially improved life cycle analysis (LCA)

ESP Project Resource Allocation

Staff years

Activity	FY02 (actual)	FY03 (plan)	Delta (FY03-FY02)
Proj. management/communication	1.0	0.7	(0.3)
Process modeling and economics	2.2	1.0	(1.2)
Sample compositional analysis	1.5	0.5	(1.0)
Corn stover variability	1.4	0.7	(0.7)
Pretreatment	2.2	1.6	(0.6)
Fermentation strain evaluation	1.2	0.0	(1.2)
Enzyme hydrolysis/process	1.2	1.8	0.6
integration Total	10.7	6.3	
Other			
Life Cycle Analysis	0.25	0.25	0.0
Enzyme Testing/Evaluation	1.5	2.2	0.7

Financial Resources (k\$)

	FY02 (actual)	FY03 (plan)
Labor	1,420	1,070
Other direct cost	112	197
Subcontracts	300	130
Project Total	2,085	1,731

Purpose of Today's Meeting

- Update stakeholders on recent accomplishments
- Recommend future work directions for
 - ESP project
 - Related sugar platform activities
- Solicit feedback on recommendations (framed in context of review criteria; see next slides)
 - Are we focusing on right issues?
 - Are we appropriately facilitating commercial-track projects? (Is this known?)
- Solicit recommendations

What are the Review Criteria?

- Strategic Fit
 - Does project build knowledge, tools, or capability in alignment with Program goals?
- Customer
 - Who are the customers for this knowledge?
 - Is this information valuable to them?

Criteria (cont'd)

- Technical Feasibility and Risk
 - Is research approach feasible?
 - What are the technical risks?
- Competitive Advantage
 - Does knowledge or capability improve the likelihood of commercial success?
 - Attractive relative to other (old/new) routes?
 - What are relative chances for success?

Criteria (cont'd)

- Legal/Regulatory Compliance
 - What patent, emission, safety, and permitting issues must be considered?
 - Are they surmountable?
- Critical Success Factors and Showstoppers
 - What are the major technical and market/financial barriers?

Many Technical & Market Barriers

Enzyme-Based Process

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Other

• Lignin Utilization

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Financial: high cost and risk, market, policy and funding uncertainties

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Process Modeling and Economics

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Evaluates technical feasibility, risk, and competitiveness, and guides R&D priorities

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Financial: high cost and risk, market, policy and funding uncertainties

<u>Other</u>

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability <

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Financial: high cost and risk, market, policy and funding

Life Cycle Analysis

uncertainties

<u>Other</u>

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Corn Stover Variability

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal Financial: high cost and risk, market, policy and funding uncertainties

<u>Other</u>

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure
- and composition influence on reactivity
- Fundamental enzyme biochemistry

High Solids Pretreatment

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Financial: high cost and risk, market, policy and funding uncertainties

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Other

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Enzymatic
Hydrolysis/Process
Integration

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal Financial: high cost and risk, market, policy and funding uncertainties

Other

Tomorrow's Presentations

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/ Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamentalenzymebiochemistry

Cellulase Cost Reduction

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Financial: high cost and risk, market, policy and funding uncertainties

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

<u>Other</u>

Tomorrow's Presentations

Pretreatment/ **Enzymatic** Sugar **Feedstock Hydrolysis Fermentation** Conditioning • Low specific activity • Infrastructure – • Process chemistry Fermentation microorganisms collection, • High cost Role of biomass transportation, structure and • Bio/catalysts • Biomass structure handling, storage composition and composition • Composition – **Process Integration** influence on Materials of validated reactivity construction High quality methods and performance data • Fundamental enzyme High solids processing sensors biochemistry • Understanding of • Variability key process Sustainability interactions Separation Sample Compositional requirements **Analysis** Understanding. Kinetic models process chemistry Financial: high cost and risk, Legal/Regulatory: safety, emissions, greenhouse gases, market, policy and funding Other permitting, waste disposal uncertainties • Lignin Utilization

Tomorrow's Presentations

Feedstock

- Infrastructure collection, transportation, handling, storage
- Composition validated methods and sensors
- Variability
- Sustainability

Pretreatment/Conditioning

- Process chemistry
- Role of biomass structure and composition
- Materials of construction
- High solids processing

Partnerships

Enzymatic Hydrolysis

- Low specific activity
- High cost
- Biomass structure and composition influence on reactivity
- Fundamental enzyme biochemistry

Focus on old and new customers

Legal/Regulatory: safety, emissions, greenhouse gases, permitting, waste disposal

Financial: high cost and risk, market, policy and funding uncertainties

Sugar Fermentation

- Fermentation microorganisms
- Bio/catalysts

Process Integration

- High quality performance data
- Understanding of key process interactions
- Separation requirements
- Kinetic models

Other

ESP Project Review Agenda

- Project Overview (Dan Schell)
- Analysis Progress
 - » Process Modeling and Economics (Mark Ruth)
 - » Life Cycle Analysis (Cindy Riley)
- Experimental Progress
 - » Corn Stover Variability (Steve Thomas)
 - » Pretreatment (Dan Schell)
 - » Enzymatic Hydrolysis/Process Integration (Kiran Kadam)
- Summary/Next Steps (Dan Schell)